Thomas Alva Edison

San Marino - Scott #1027 (1982)
San Marino – Scott #1027 (1982)

Thomas Alva Edison was born, on February 11, 1847, in Milan, Ohio, and grew up in Port Huron, Michigan. Edison was an American inventor and businessman, who has been described as America’s greatest inventor. He is credited with developing many devices in fields such as electric power generation, mass communication, sound recording, and motion pictures. These inventions, which include the phonograph, the motion picture camera, and the long-lasting, practical electric light bulb, had a widespread impact on the modern industrialized world. He was one of the first inventors to apply the principles of mass production and teamwork to the process of invention, working with many researchers and employees. He is often credited with establishing the first industrial research laboratory. He established his first laboratory facility in Menlo Park, New Jersey, in 1876, where many of his early inventions would be developed. He would later establish a botanic laboratory in Fort Myers, Florida in collaboration with businessmen Henry Ford and Harvey Firestone, and a laboratory in West Orange, New Jersey that featured the world’s first film studio, the Black Maria. He was a prolific inventor, holding 1,093 US patents in his name, as well as patents in other countries. Edison married twice and fathered six children. He died on October 18, 1931 of complications of diabetes. He was previously featured on ASAD in November 2018 with an article discussing his invention of the phonograph.

Thomas Alva Edison (1847-1931)
Thomas Alva Edison (1847-1931)
Birthplace of Thomas A. Edison in Milan, Ohio. Photo taken by Chris Light on November 4, 2008. Used under the Creative Commons Attribution-Share Alike 3.0 Unported license.

Thomas Edison was the seventh and last child of Samuel Ogden Edison Jr. (1804–1896, born in Marshalltown, Nova Scotia) and Nancy Matthews Elliott (1810–1871, born in Chenango County, New York). His father, the son of a Loyalist refugee, had moved as a boy with the family from Nova Scotia, settling in southwestern Ontario (then called Upper Canada), in a village known as Shewsbury, later Vienna, by 1811. Samuel Jr. eventually fled Ontario, because he took part in the unsuccessful Mackenzie Rebellion of 1837. His father, Samuel Sr., had earlier fought in the War of 1812 as captain of the First Middlesex Regiment. By contrast, Samuel Jr.’s struggle found him on the losing side, and he crossed into the United States at Sarnia-Port Huron. Once across the border, he found his way to Milan, Ohio. His patrilineal family line was Dutch by way of New Jersey; the surname had originally been “Edeson.”

Edison only attended school for a few months and was instead taught by his mother. Much of his education came from reading R.G. Parker’s School of Natural Philosophy and The Cooper Union for the Advancement of Science and Art.

Edison developed hearing problems at an early age. The cause of his deafness has been attributed to a bout of scarlet fever during childhood and recurring untreated middle-ear infections. Around the middle of his career, Edison attributed the hearing impairment to being struck on the ears by a train conductor when his chemical laboratory in a boxcar caught fire and he was thrown off the train in Smiths Creek, Michigan, along with his apparatus and chemicals. In his later years, he modified the story to say the injury occurred when the conductor, in helping him onto a moving train, lifted him by the ears.

Thomas Alva Edison

Photos of Thomas Edison as a young boy.
Photos of Thomas Edison as a young boy.

When he was seven years old, Edison’s family moved to Port Huron, Michigan, after the canal owners successfully kept the railroad out of Milan Ohio in 1854 and business declined. Edison sold candy and newspapers on trains running from Port Huron to Detroit, and also sold vegetables. He became a telegraph operator after he saved three-year-old Jimmie MacKenzie from being struck by a runaway train. Jimmie’s father, station agent J. U. MacKenzie of Mount Clemens, Michigan, was so grateful that he trained Edison as a telegraph operator. Edison’s first telegraphy job away from Port Huron was at Stratford Junction, Ontario, on the Grand Trunk Railway. He was held responsible for a near collision. He also studied qualitative analysis and conducted chemical experiments on the train until he left the job.

Edison obtained the exclusive right to sell newspapers on the road, and, with the aid of four assistants, he set in type and printed the Grand Trunk Herald, which he sold with his other papers. This began Edison’s long streak of entrepreneurial ventures, as he discovered his talents as a businessman. These talents eventually led him to found 14 companies, including General Electric, still one of the largest publicly traded companies in the world.

In 1866, at the age of 19, Edison moved to Louisville, Kentucky, where, as an employee of Western Union, he worked the Associated Press bureau news wire. Edison requested the night shift, which allowed him plenty of time to spend at his two favorite pastimes — reading and experimenting. Eventually, the latter pre-occupation cost him his job. One night in 1867, he was working with a lead–acid battery when he spilled sulfuric acid onto the floor. It ran between the floorboards and onto his boss’s desk below. The next morning Edison was fired.

Thomas Edison's first patent for the Electric Vote Counter.
Thomas Edison’s first patent for the Electric Vote-Recorder, 1869.

His first patent was for the electric vote recorder, U.S. Patent 90,646, which was granted on June 1, 1869. Finding little demand for the machine, Edison moved to New York City shortly thereafter. One of his mentors during those early years was a fellow telegrapher and inventor named Franklin Leonard Pope, who allowed the impoverished youth to live and work in the basement of his Elizabeth, New Jersey, home, while Edison worked for Samuel Laws at the Gold Indicator Company. Pope and Edison founded their own company in October 1869, working as electrical engineers and inventors. Edison began developing a multiplex telegraphic system, which could send two messages simultaneously, in 1874.

Edison’s major innovation was the establishment of an industrial research lab in 1876. It was built in Menlo Park, a part of Raritan Township (now named Edison Township in his honor) in Middlesex County, New Jersey, with the funds from the sale of Edison’s quadruplex telegraph. After his demonstration of the telegraph, Edison was not sure that his original plan to sell it for $4,000 to $5,000 was right, so he asked Western Union to make a bid. He was surprised to hear them offer $10,000 ($221,400 in today’s dollars.), which he gratefully accepted. The quadruplex telegraph was Edison’s first big financial success, and Menlo Park became the first institution set up with the specific purpose of producing constant technological innovation and improvement. Edison was legally attributed with most of the inventions produced there, though many employees carried out research and development under his direction. His staff was generally told to carry out his directions in conducting research, and he drove them hard to produce results.

Upstairs at Thomas Edison’s Menlo Park Laboratory reconstructed at Greenfield Village at Henry Ford Museum in Dearborn, Michigan. Note the organ against the back wall. Photo taken by Andrew Balet on July 2, 2006. Used under the Creative Commons Attribution-Share Alike 2.5 Generic license.

William Joseph Hammer, a consulting electrical engineer, started working for Edison and began his duties as a laboratory assistant in December 1879. He assisted in experiments on the telephone, phonograph, electric railway, iron ore separator, electric lighting, and other developing inventions. However, Hammer worked primarily on the incandescent electric lamp and was put in charge of tests and records on that device. In 1880, he was appointed chief engineer of the Edison Lamp Works. In his first year, the plant under General Manager Francis Robbins Upton turned out 50,000 lamps. According to Edison, Hammer was “a pioneer of incandescent electric lighting”. Frank J. Sprague, a competent mathematician and former naval officer, was recruited by Edward H. Johnson and joined the Edison organization in 1883. One of Sprague’s contributions to the Edison Laboratory at Menlo Park was to expand Edison’s mathematical methods. Despite the common belief that Edison did not use mathematics, analysis of his notebooks reveal that he was an astute user of mathematical analysis conducted by his assistants such as Francis Robbins Upton, for example, determining the critical parameters of his electric lighting system including lamp resistance by an analysis of Ohm’s Law, Joule’s Law and economics.

Nearly all of Edison’s patents were utility patents, which were protected for a 17-year period and included inventions or processes that are electrical, mechanical, or chemical in nature. About a dozen were design patents, which protect an ornamental design for up to a 14-year period. As in most patents, the inventions he described were improvements over prior art. The phonograph patent, in contrast, was unprecedented as describing the first device to record and reproduce sounds.

Thomas Alva Edison in 1878
Thomas Alva Edison in 1878

In just over a decade, Edison’s Menlo Park laboratory had expanded to occupy two city blocks. Edison said he wanted the lab to have “a stock of almost every conceivable material”. A newspaper article printed in 1887 reveals the seriousness of his claim, stating the lab contained “eight thousand kinds of chemicals, every kind of screw made, every size of needle, every kind of cord or wire, hair of humans, horses, hogs, cows, rabbits, goats, minx, camels … silk in every texture, cocoons, various kinds of hoofs, shark’s teeth, deer horns, tortoise shell … cork, resin, varnish and oil, ostrich feathers, a peacock’s tail, jet, amber, rubber, all ores …” and the list goes on.

Over his desk, Edison displayed a placard with Sir Joshua Reynolds’ famous quotation: “There is no expedient to which a man will not resort to avoid the real labor of thinking.” This slogan was reputedly posted at several other locations throughout the facility.

Edison with his phonograph (2nd model), taken in Mathew Brady's Washington, D.C. studio by Levin C. Handy likely on April 18, 1878. Currently in the Brady-Handy Photograph Collection of the Library of Congress, Washington, D.C. Reproduction Number: LC-DIG-cwpbh-04326 (digital file from original negative)
Edison with his phonograph (2nd model), taken in Mathew Brady’s Washington, D.C. studio by Levin C. Handy likely on April 18, 1878. Currently in the Brady-Handy Photograph Collection of the Library of Congress, Washington, D.C. Reproduction Number: LC-DIG-cwpbh-04326 (digital file from original negative)

Edison began his career as an inventor in Newark, New Jersey, with the automatic repeater and his other improved telegraphic devices, but the invention that first gained him wider notice was the phonograph in 1877. This accomplishment was so unexpected by the public at large as to appear almost magical. Edison became known as “The Wizard of Menlo Park.”

His first phonograph recorded on tinfoil around a grooved cylinder. Despite its limited sound quality and that the recordings could be played only a few times, the phonograph made Edison a celebrity. Joseph Henry, president of the National Academy of Sciences and one of the most renowned electrical scientists in the US, described Edison as “the most ingenious inventor in this country… or in any other”. In April 1878, Edison traveled to Washington to demonstrate the phonograph before the National Academy of Sciences, Congressmen, Senators and U.S. President Warren B. Hayes. The Washington Post described Edison as a “genius” and his presentation as “a scene… that will live in history”. Although Edison obtained a patent for the phonograph in 1878, he did little to develop it until Alexander Graham Bell, Chichester Bell, and Charles Tainter produced a phonograph-like device in the 1880s that used wax-coated cardboard cylinders.

U.S. Patent Office application for an improvement to the phonograph by Thomas Edison, issued on February 19, 1878.
U.S. Patent Office application for an improvement to the phonograph by Thomas Edison, issued on February 19, 1878.

In 1876, Edison began work to improve the microphone for telephones (at that time called a “transmitter”) by developing a carbon microphone, which consists of two metal plates separated by granules of carbon that would change resistance with the pressure of sound waves. A steady direct current is passed between the plates through the granules and the varying resistance results in a modulation of the current, creating a varying electric current that reproduces the varying pressure of the sound wave.

Up to that point, microphones, such as the ones developed by Johann Philipp Reis and Alexander Graham Bell, worked by generating a weak current. The carbon microphone works by modulating a direct current and, subsequently, using a transformer to transfer the signal so generated to the telephone line. Edison was one of many inventors working on the problem of creating a usable microphone for telephony by having it modulate an electrical current passed through it. His work was concurrent with Emile Berliner’s loose-contact carbon transmitter (who lost a later patent case against Edison over the carbon transmitters invention) and David Edward Hughes study and published paper on the physics of loose-contact carbon transmitters (work that Hughes did not bother to patent).

Edison used the carbon microphone concept in 1877 to create an improved telephone for Western Union. In 1886, Edison found a way to improve a Bell Telephone microphone, one that used loose-contact ground carbon, with his discovery that it worked far better if the carbon was roasted. This type was put in use in 1890 and was used in all telephones along with the Bell receiver until the 1980s.

Thomas Edison’s first successful light bulb model, used in public demonstration at Menlo Park, December 1879. Photo taken by Jonnie Nord on August 12, 2006. Used under the Creative Commons Attribution-Share Alike 3.0 Unported license.

In 1878, Edison began working on a system of electrical illumination, something he hoped could compete with gas and oil based lighting. He began by tackling the problem of creating a long-lasting incandescent lamp, something that would be needed for indoor use. Many earlier inventors had previously devised incandescent lamps, including Alessandro Volta’s demonstration of a glowing wire in 1800 and inventions by Henry Woodward and Mathew Evans. Others who developed early and commercially impractical incandescent electric lamps included Humphry Davy, James Bowman Lindsay, Moses G. Farmer, William E. Sawyer, Joseph Swan, and Heinrich Göbel. Some of these early bulbs had such flaws as an extremely short life, high expense to produce, and high electric current drawn, making them difficult to apply on a large scale commercially. Edison realized that to connect a series of electric lights to an economically manageable size and using the necessary thickness of copper wire, he would have to develop a lamp that used a low amount of current. This lamp must have high resistance and use relatively low voltage (around 110 volts).

After many experiments, first with carbon filaments and then with platinum and other metals, Edison returned to a carbon filament. The first successful test was on October 22, 1879; it lasted 13.5 hours. Edison continued to improve this design and on November 4, 1879, filed for U.S. patent 223,898 (granted on January 27, 1880) for an electric lamp using “a carbon filament or strip coiled and connected to platina contact wires”. This was the first commercially practical incandescent light.

U.S. Patent#223898: Electric-Lamp patent application. Issued January 27, 1880. Photolithography reproduction.
U.S. Patent#223898: Electric-Lamp patent application. Issued January 27, 1880. Photolithography reproduction.

Although the patent described several ways of creating the carbon filament including “cotton and linen thread, wood splints, papers coiled in various ways”, it was not until several months after the patent was granted that Edison and his team discovered a carbonized bamboo filament that could last over 1,200 hours. The idea of using this particular raw material originated from Edison’s recalling his examination of a few threads from a bamboo fishing pole while relaxing on the shore of Battle Lake in the present-day state of Wyoming, where he and other members of a scientific team had traveled so that they could clearly observe a total eclipse of the sun on July 29, 1878, from the Continental Divide.

In 1878, Edison formed the Edison Electric Light Company in New York City with several financiers, including J. P. Morgan, Spencer Trask, and the members of the Vanderbilt family. Edison made the first public demonstration of his incandescent light bulb on December 31, 1879, in Menlo Park. It was during this time that he said: “We will make electricity so cheap that only the rich will burn candles.”

The Oregon Railroad and Navigation Company's new steamship, the Columbia, was the first commercial application for Edison's incandescent light bulb in 1880.
The Oregon Railroad and Navigation Company’s new steamship, the Columbia, was the first commercial application for Edison’s incandescent light bulb in 1880.

Henry Villard, president of the Oregon Railroad and Navigation Company, attended Edison’s 1879 demonstration. Villard was impressed and requested Edison install his electric lighting system aboard Villard’s company’s new steamer, S.S. Columbia. Although hesitant at first, Edison agreed to Villard’s request. Most of the work was completed in May 1880, and the Columbia went to New York City, where Edison and his personnel installed the ship’s new lighting system. The Columbia was Edison’s first commercial application for his incandescent light bulb. The Edison equipment was removed from Columbia in 1895.

Lewis Latimer joined the Edison Electric Light Company in 1884. Latimer had received a patent in January 1881 for the “Process of Manufacturing Carbons”, an improved method for the production of carbon filaments for light bulbs. Latimer worked as an engineer, a draftsman and an expert witness in patent litigation on electric lights.

Thomas Edison using his dictating machine.
Thomas Edison using his dictating machine.

George Westinghouse’s company bought Philip Diehl’s competing induction lamp patent rights (1882) for $25,000, forcing the holders of the Edison patent to charge a lower rate for the use of the Edison patent rights and lowering the price of the electric lamp.

On October 8, 1883, the U.S. patent office ruled that Edison’s patent was based on the work of William E. Sawyer and was, therefore, invalid. Litigation continued for nearly six years, until October 6, 1889, when a judge ruled that Edison’s electric light improvement claim for “a filament of carbon of high resistance” was valid. To avoid a possible court battle with Joseph Swan, whose British patent had been awarded a year before Edison’s, he and Swan formed a joint company called Ediswan to manufacture and market the invention in Britain.

Mahen Theatre in Brno (in what is now the Czech Republic), opened in 1882, and was the first public building in the world to use Edison’s electric lamps. Francis Jehl, Edison’s assistant in the invention of the lamp, supervised the installation. In September 2010, a sculpture of three giant light bulbs was erected in Brno, in front of the theatre.

Edison Machine Works on Goerck Street in New York, 1881
Edison Machine Works on Goerck Street in New York, 1881

After devising a commercially viable electric light bulb on October 21, 1879, Edison developed an electric “utility” to compete with the existing gas light utilities. On December 17, 1880, he founded the Edison Illuminating Company, and during the 1880s, he patented a system for electricity distribution. The company established the first investor-owned electric utility in 1882 on Pearl Street Station, New York City. On September 4, 1882, Edison switched on his Pearl Street generating station’s electrical power distribution system, which provided 110 volts direct current (DC) to 59 customers in lower Manhattan.

In January 1882, Edison switched on the first steam-generating power station at Holborn Viaduct in London. The DC supply system provided electricity supplies to street lamps and several private dwellings within a short distance of the station. On January 19, 1883, the first standardized incandescent electric lighting system employing overhead wires began service in Roselle, New Jersey.

As Edison expanded his direct current (DC) power delivery system, he received stiff competition from companies installing alternating current (AC) systems. From the early 1880s AC arc lighting systems for streets and large spaces had been an expanding business in the US. With the development of transformers in Europe and by Westinghouse Electric in the U.S. in 1885–1886, it became possible to transmit AC long distances over thinner and cheaper wires, and “step down” the voltage at the destination for distribution to users. This allowed AC to be used in street lighting and in lighting for small business and domestic customers, the market Edison’s patented low voltage DC incandescent lamp system was designed to supply. Edison’s DC empire suffered from one of its chief drawbacks: it was suitable only for the high density of customers found in large cities. Edison’s DC plants could not deliver electricity to customers more than one mile from the plant, and left a patchwork of unsupplied customers between plants. Small cities and rural areas could not afford an Edison style system at all, leaving a large part of the market without electrical service. AC companies expanded into this gap.

Thomas Edison's displays and demonstration area at the Exposition Universelle world's fair held in Paris from May 6 to October 31, 1889.
Thomas Edison’s displays and demonstration area at the Exposition Universelle world’s fair held in Paris from May 6 to October 31, 1889.

Edison expressed views that AC was unworkable and the high voltages used were dangerous. As George Westinghouse installed his first AC systems in 1886, Thomas Edison struck out personally against his chief rival stating, “Just as certain as death, Westinghouse will kill a customer within six months after he puts in a system of any size. He has got a new thing and it will require a great deal of experimenting to get it working practically.” Many reasons have been suggested for Edison’s anti-AC stance. One notion is that the inventor could not grasp the more abstract theories behind AC and was trying to avoid developing a system he did not understand. Edison also appeared to have been worried about the high voltage from misinstalled AC systems killing customers and hurting the sales of electric power systems in general.[69] Primary was the fact that Edison Electric based their design on low voltage DC and switching a standard after they had installed over 100 systems was, in Edison’s mind, out of the question. By the end of 1887, Edison Electric was losing market share to Westinghouse, who had built 68 AC-based power stations to Edison’s 121 DC-based stations. To make matters worse for Edison, the Thomson-Houston Electric Company of Lynn, Massachusetts (another AC-based competitor) built 22 power stations.

Parallel to expanding competition between Edison and the AC companies was rising public furor over a series of deaths in the spring of 1888 caused by pole mounted high voltage alternating current lines. This turned into a media frenzy against high voltage alternating current and the seemingly greedy and callous lighting companies that used it. Edison took advantage of the public perception of AC as dangerous, and joined with self-styled New York anti-AC crusader Harold P. Brown in a propaganda campaign, aiding Brown in the public electrocution of animals with AC, and supported legislation to control and severely limit AC installations and voltages (to the point of making it an ineffective power delivery system) in what was now being referred to as a “battle of currents”. The development of the electric chair was used in an attempt to portray AC as having a greater lethal potential than DC and smear Westinghouse at the same time via Edison colluding with Brown and Westinghouse’s chief AC rival, the Thomson-Houston Electric Company, to make sure the first electric chair was powered by a Westinghouse AC generator.

Thomas Edison’s staunch anti-AC tactics were not sitting well with his own stockholders. By the early 1890s, Edison’s company was generating much smaller profits than its AC rivals, and the War of Currents would come to an end in 1892 with Edison forced out of controlling his own company. That year, the financier J.P. Morgan engineered a merger of Edison General Electric with Thomson-Houston that put the board of Thomson-Houston in charge of the new company called General Electric. General Electric now controlled three-quarters of the U.S. electrical business and would compete with Westinghouse for the AC market.

Glenmont, Thomas Edison's estate in Llewellyn Park in West Orange in Essex County, New Jersey. Photo taken circa June 2010.
Glenmont, Thomas Edison’s estate in Llewellyn Park in West Orange in Essex County, New Jersey. Photo taken circa June 2010.
Thomas Edison Estate in Fort Myers, Florida. Main house at left, guest house at right. Photo taken by Fredlyfish4 on January 10, 2016.

Edison moved from Menlo Park after the death of his first wife, Mary, in 1884, and purchased a home known as “Glenmont” in 1886 as a wedding gift for his second wife, Mina, in Llewellyn Park in West Orange, New Jersey. In 1885, Thomas Edison bought property in Fort Myers, Florida, and built what was later called Seminole Lodge as a winter retreat. Edison and Mina spent many winters at their home in Fort Myers, and Edison tried to find a domestic source of natural rubber.

Due to the security concerns around World War I, Edison suggested forming a science and industry committee to provide advice and research to the U.S. military, and he headed the Naval Consulting Board in 1915.

Share of the Edison Storage Battery Company, issued October 19, 1903
Share of the Edison Storage Battery Company, issued October 19, 1903

Edison became concerned with America’s reliance on foreign supply of rubber and was determined to find a native supply of rubber. Edison’s work on rubber took place largely at his research laboratory in Fort Myers, which has been designated as a National Historic Chemical Landmark.

The laboratory was built after Thomas Edison, Henry Ford, and Harvey Firestone pulled together $75,000 to form the Edison Botanical Research Corporation. Initially, only Ford and Firestone were to contribute funds to the project while Edison did all the research. Edison, however, wished to contribute $25,000 as well. Edison did the majority of the research and planting, sending results and sample rubber residues to his West Orange Lab. Edison employed a two-part Acid-base extraction, to derive latex from the plant material after it was dried and crushed to a powder. After testing 17,000 plant samples, he eventually found an adequate source in the Goldenrod plant. Edison decided on Solidago leavenworthii, also known as Leavenworth’s Goldenrod. The plant, which normally grows roughly 3–4 feet tall with a 5% latex yield, was adapted by Edison through cross-breeding to produce plants twice the size and with a latex yield of 12%.

Left to right: Henry Ford, Thomas Edison, John Burroughs, Harvey Firestone
Left to right: Henry Ford, Thomas Edison, John Burroughs, Harvey Firestone
Thomas Edison with a Ford Model T motor car.
Thomas Edison with a Ford Model T motor car.

Henry Ford, the automobile magnate, later lived a few hundred feet away from Edison at his winter retreat in Fort Myers. Ford once worked as an engineer for the Edison Illuminating Company of Detroit and met Edison at a convention of affiliated Edison illuminating companies in Brooklyn, New York, in 1896. Edison was impressed with Ford’s internal combustion engine automobile and encouraged its developments. They were friends until Edison’s death. Edison and Ford undertook annual motor camping trips from 1914 to 1924. Harvey Firestone and naturalist John Burroughs also participated.

In 1928, Edison joined the Fort Myers Civitan Club. He believed strongly in the organization, writing that “The Civitan Club is doing things — big things — for the community, state, and nation, and I certainly consider it an honor to be numbered in its ranks.” He was an active member in the club until his death, sometimes bringing Henry Ford to the club’s meetings.

Edison was active in business right up to the end. Just months before his death, the Lackawanna Railroad inaugurated suburban electric train service from Hoboken to Montclair, Dover, and Gladstone, New Jersey. Electrical transmission for this service was by means of an overhead catenary system using direct current, which Edison had championed. Despite his frail condition, Edison was at the throttle of the first electric MU (Multiple-Unit) train to depart Lackawanna Terminal in Hoboken in September 1930, driving the train the first mile through Hoboken yard on its way to South Orange. This fleet of cars would serve commuters in northern New Jersey for the next 54 years until their retirement in 1984. A plaque commemorating Edison’s inaugural ride can be seen today in the waiting room of Lackawanna Terminal in Hoboken, which is presently operated by New Jersey Transit.

Thomas Edison stands in his chemistry lab in West Orange, New Jersey, in 1904.
Thomas Edison stands in his chemistry lab in West Orange, New Jersey, in 1904.

Edison was said to have been influenced by a popular fad diet in his last few years; “the only liquid he consumed was a pint of milk every three hours”. He is reported to have believed this diet would restore his health. However, this tale is doubtful. In 1930, the year before Edison died, Mina said in an interview about him, “correct eating is one of his greatest hobbies.” She also said that during one of his periodic “great scientific adventures”, Edison would be up at 7:00, have breakfast at 8:00, and be rarely home for lunch or dinner, implying that he continued to have all three.

Edison became the owner of his Milan, Ohio, birthplace in 1906. On his last visit, in 1923, he was reportedly shocked to find his old home still lit by lamps and candles.

Edison died of complications of diabetes on October 18, 1931, in his home, Glenmont in Llewellyn Park. Reverend Stephen J. Herben officiated at the funeral; Edison is buried behind the home.

Edison’s last breath is reportedly contained in a test tube at The Henry Ford museum near Detroit. Ford reportedly convinced Charles Edison to seal a test tube of air in the inventor’s room shortly after his death, as a memento. A plaster death mask and casts of Edison’s hands were also made. Mina died in 1947.

United States - Scott #654-656 (1929)
United States – Scott #654-656 (1929)

Thomas Edison was first commemorated by a United States stamp when, two years before his death, the U.S. Post Office Department released three stamps of the same design to mark the 50th anniversary of the first incandescent light bulb, invented by Edison. Scott #654 was a 2-cent carmine rose stamp printed on the flat plate press in a quantity of 31,679,200 and issued on June 5, 1929, in Menlo Park, New Jersey. On June 11, 210,119,474 copies of the design as printed on the rotary press were released with initial sales in Washington, D.C. (Scott #655). On the same date, also printed on the rotary press, 133,530,000 additional stamps were issued cut into coils, perforated 12, vertically, produced for use in vending machines (Scott #656). This was the first time a commemorative stamp was issued in coil format. Edison’s portrait first appeared on a U.S. stamp when Scott #945 was issued on February 11, 1947, described in a previous article on A Stamp A Day.

A number of other countries have issues stamps commemorating Thomas Edison and his various inventions. Some of my favorites include a 1981 release by México (Scott #1255), one from Uruguay issued in 2001 (Scott #1909), and an air mail stamp from Hungary in 1948 (Scott #C58). For today’s stamp, however, I chose Scott #1027 released by the Republic of San Marino as part of a ten-stamp “Pioneers of Science” set on April 21, 1982 (Scott #1021-1030). The lowest values — depicting Archimedes (20 Sammarinese lira), Nikolaus Kopernikus (30 lira), Sir Isaac Newton (40 lira), Antoine L. Lavoisier (50 lira), Marie Curie (60 lira), and Robert Koch (100 lira) — were printed using the photogravure process while the stamps portraying Edison (200 lira), Guglielmo Marconi (300 lira), and Hippocrates (450 lira) were printed in a combination of offset lithography and recess printing. The highest value with a portrait of Galileo Galilei denominated at 5,000 lira was fully recess printed. All of the stamps were comb perforated in a gauge of 14¼ x 13½.

Thomas Alva Edison, three-quarter length portrait, seated, facing front, circa 1922. Photo taken by Louis Bachrach, Bachrach Studios, restored by Michel Vuijlsteke (dust and scratches removed, global and local histogram changes; some local sharpening). This image is available from the United States Library of Congress's Prints and Photographs division under the digital ID cph.3c05139.
Thomas Alva Edison, three-quarter length portrait, seated, facing front, circa 1922. Photo taken by Louis Bachrach, Bachrach Studios, restored by Michel Vuijlsteke (dust and scratches removed, global and local histogram changes; some local sharpening). This image is available from the United States Library of Congress’s Prints and Photographs division under the digital ID cph.3c05139.

 

Advertisements

1 Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.