United States - Scott #1488 (1973)

Nicoalus Copernicus

United States - Scott #1488 (1973)
United States – Scott #1488 (1973)

Nicolaus Copernicus (Mikołaj Kopernik in Polish and either Nikolaus Kopernikus or Niklas Koppernigk in German) was born on February 19, 1473, in the city of Thorn (modern Toruń), in the province of Royal Prussia, in the Crown of the Kingdom of Poland, the youngest of four children. The Renaissance-era mathematician and astronomer formulated a model of the universe that placed the Sun rather than the Earth at the center of the universe, in all likelihood independently of Aristarchus of Samos, who had formulated such a model some eighteen centuries earlier.

The publication of Copernicus’ model in his book De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres), just before his death in 1543, was a major event in the history of science, triggering the Copernican Revolution and making a pioneering contribution to the Scientific Revolution.

Copernicus was born and died in Royal Prussia, a region that had been part of the Kingdom of Poland since 1466. A polyglot and polymath, he obtained a doctorate in canon law and was also a mathematician, astronomer, physician, classics scholar, translator, governor, diplomat, and economist. In 1517 he derived a quantity theory of money — a key concept in economics — and in 1519 he formulated an economic principle that later came to be called Gresham’s law.

 The surname Kopernik, Copernik, Koppernigk is recorded in Kraków from c. 1350, in various spellings, apparently given to people from the village of Koperniki (prior to 1845 rendered Kopernik, Copernik, Copirnik and Koppirnik) in the Duchy of Nysa. Nicolas Copernicus’ great-grandfather is recorded as having received citizenship in Kraków in 1386. The toponym Kopernik (modern Koperniki) has been variously tied to the Polish word for dill (koper) and German for copper (Kupfer). The suffix –nik (or plural –niki) denotes a Slavic and Polish agent noun, though.

“Nicolaus Copernicus Tornaeus Borussus Mathemat.”, 1597

As was common in the period, the spellings of both the toponym and the surname vary greatly. Copernicus “was rather indifferent about orthography”. During his childhood, about 1480, the name of his father (and thus of the future astronomer) was recorded in Thorn as Niclas Koppernigk. At Kraków he signed himself, in Latin, Nicolaus Nicolai de Torunia (Nicolaus, son of Nicolaus, of Toruń).[q] At Bologna, in 1496, he registered in the Matricula Nobilissimi Germanorum Collegii, resp. Annales Clarissimae Nacionis Germanorum, of the Natio Germanica Bononiae, as Dominus Nicolaus Kopperlingk de Thorn – IX grosseti. At Padua he signed himself “Nicolaus Copernik”, later “Coppernicus”. The astronomer thus Latinized his name to Coppernicus, generally with two “p”s (in 23 of 31 documents studied), but later in life he used a single “p”. On the title page of De revolutionibus, Rheticus published the name (in the genitive, or possessive, case) as “Nicolai Copernici”.

Copernicus is postulated to have spoken Latin, German, and Polish with equal fluency; he also spoke Greek and Italian, and had some knowledge of Hebrew. The vast majority of Copernicus’s extant writings are in Latin, the language of European academia in his lifetime.

Arguments for German being Copernicus’s native tongue are that he was born in a predominantly German-speaking city and that, while studying canon law at Bologna in 1496, he signed into the German natio (Natio Germanorum) — a student organization which, according to its 1497 by-laws, was open to students of all kingdoms and states whose mother-tongue was German. However, according to French philosopher Alexandre Koyré, Copernicus’s registration with the Natio Germanorum does not in itself imply that Copernicus considered himself German, since students from Prussia and Silesia were routinely so categorized, which carried certain privileges that made it a natural choice for German-speaking students, regardless of their ethnicity or self-identification.

Copernicus was still working on De revolutionibus orbium coelestium (even if not certain that he wanted to publish it) when in 1539 Georg Joachim Rheticus, a Wittenberg mathematician, arrived in Frombork. Philipp Melanchthon, a close theological ally of Martin Luther, had arranged for Rheticus to visit several astronomers and study with them. Rheticus became Copernicus’s pupil, staying with him for two years and writing a book, Narratio prima (First Account), outlining the essence of Copernicus’s theory. In 1542 Rheticus published a treatise on trigonometry by Copernicus (later included as chapters 13 and 14 of Book I of De revolutionibus). Under strong pressure from Rheticus, and having seen the favorable first general reception of his work, Copernicus finally agreed to give De revolutionibus to his close friend, Tiedemann Giese, bishop of Chełmno (Kulm), to be delivered to Rheticus for printing by the German printer Johannes Petreius at Nuremberg (Nürnberg), Germany. While Rheticus initially supervised the printing, he had to leave Nuremberg before it was completed, and he handed over the task of supervising the rest of the printing to a Lutheran theologian, Andreas Osiander.

Osiander added an unauthorized and unsigned preface, defending Copernicus’ work against those who might be offended by its novel hypotheses. He argued that “different hypotheses are sometimes offered for one and the same motion [and therefore] the astronomer will take as his first choice that hypothesis which is the easiest to grasp.” According to Osiander, “these hypotheses need not be true nor even probable. [I]f they provide a calculus consistent with the observations, that alone is enough.”

Copernicus Monument in Warsaw designed by the Danish sculptor Bertel Thorvaldsen
Copernicus Monument in Warsaw designed by the Danish sculptor Bertel Thorvaldsen

Toward the close of 1542, Copernicus was seized with apoplexy and paralysis, and he died at age 70 on May 24, 1543. Legend has it that he was presented with the final printed pages of his Dē revolutionibus orbium coelestium on the very day that he died, allowing him to take farewell of his life’s work. He is reputed to have awoken from a stroke-induced coma, looked at his book, and then died peacefully.

Copernicus was reportedly buried in Frombork Cathedral, where a 1580 epitaph stood until being defaced; it was replaced in 1735. For over two centuries, archaeologists searched the cathedral in vain for Copernicus’ remains. Efforts to locate them in 1802, 1909, 1939 had come to nought. In 2004 a team led by Jerzy Gąssowski, head of an archaeology and anthropology institute in Pułtusk, began a new search, guided by the research of historian Jerzy Sikorski. In August 2005, after scanning beneath the cathedral floor, they discovered what they believed to be Copernicus’s remains.

The discovery was announced only after further research, on November 3, 2008. Gąssowski said he was “almost 100 percent sure it is Copernicus”. Forensic expert Capt. Dariusz Zajdel of the Polish Police Central Forensic Laboratory used the skull to reconstruct a face that closely resembled the features — including a broken nose and a scar above the left eye — on a Copernicus self-portrait. The expert also determined that the skull belonged to a man who had died around age 70 — Copernicus’s age at the time of his death.

The grave was in poor condition, and not all the remains of the skeleton were found; missing, among other things, was the lower jaw. The DNA from the bones found in the grave matched hair samples taken from a book owned by Copernicus which was kept at the library of the University of Uppsala in Sweden.

Nicolaus Copernicus epitaph of 1735 in the Cathedral of Frombork (Frauenburg). To Nicholas Copernicus of Toruń, formerly a canon of this cathedral church of Varmia, a most renowned astronomer, whose name and glory have filled both spheres [i.e. heaven and earth]. The prelates, the canons, and the entire chapter of Varmia have erected, in token of brotherly love and esteem, this monument. An earlier epitaph with different wording, erected in 1580 by Cromer, had been destroyed in wars of the 17th or early 18th century.
Nicolaus Copernicus epitaph of 1735 in the Cathedral of Frombork (Frauenburg). To Nicholas Copernicus of Toruń, formerly a canon of this cathedral church of Varmia, a most renowned astronomer, whose name and glory have filled both spheres [i.e. heaven and earth]. The prelates, the canons, and the entire chapter of Varmia have erected, in token of brotherly love and esteem, this monument. An earlier epitaph with different wording, erected in 1580 by Cromer, had been destroyed in wars of the 17th or early 18th century.

On May 22, 2010, Copernicus was given a second funeral in a Mass led by Józef Kowalczyk, the former papal nuncio to Poland and newly named Primate of Poland. Copernicus’s remains were reburied in the same spot in Frombork Cathedral where part of his skull and other bones had been found. A black granite tombstone now identifies him as the founder of the heliocentric theory and also a church canon. The tombstone bears a representation of Copernicus’s model of the Solar System — a golden Sun encircled by six of the planets.

Philolaus (circa 480–385 BCE) described an astronomical system in which a Central Fire (different from the Sun) occupied the center of the universe, and a counter-Earth, the Earth, Moon, the Sun itself, planets, and stars all revolved around it, in that order outward from the centre. Heraclides Ponticus (387–312 BCE) proposed that the Earth rotates on its axis. Aristarchus of Samos (circa 310 BCE – circa 230 BCE) was the first to advance a theory that the earth orbited the sun. Further mathematical details of Aristarchus’ heliocentric system were worked out around 150 BCE by the Hellenistic astronomer Seleucus of Seleucia. Though Aristarchus’ original text has been lost, a reference in Archimedes’ book The Sand Reckoner (Archimedis Syracusani Arenarius & Dimensio Circuli) describes a work by Aristarchus in which he advanced the heliocentric model. Thomas Heath gives the following English translation of Archimedes’ text:

You are now aware [‘you’ being King Gelon] that the “universe” is the name given by most astronomers to the sphere the centre of which is the centre of the earth, while its radius is equal to the straight line between the centre of the sun and the centre of the earth. This is the common account (τά γραφόμενα) as you have heard from astronomers. But Aristarchus has brought out a book consisting of certain hypotheses, wherein it appears, as a consequence of the assumptions made, that the universe is many times greater than the “universe” just mentioned. His hypotheses are that the fixed stars and the sun remain unmoved, that the earth revolves about the sun on the circumference of a circle, the sun lying in the middle of the orbit, and that the sphere of the fixed stars, situated about the same centre as the sun, is so great that the circle in which he supposes the earth to revolve bears such a proportion to the distance of the fixed stars as the centre of the sphere bears to its surface.
— The Sand Reckoner

Copernicus cited Aristarchus of Samos in an early (unpublished) manuscript of De Revolutionibus (which still survives), though he removed the reference from his final published manuscript.

2010 grave of Nicolaus Copernicus in the Frombork Cathedral:   Nicolaus Coppernicus / natus 19.02.1473 Thoruniae / defunctus 21.05.1543 / Frauenburgi / astronomus heliocentrismi / artifex canonicus warmiensis / “Christus nostrae salutis auctor” (N. Coppernicus)

Copernicus was probably aware that Pythagoras’s system involved a moving Earth. The Pythagorean system was mentioned by Aristotle.

Copernicus owned a copy of Giorgio Valla’s De expetendis et fugiendis rebus, which included a translation of Plutarch’s reference to Aristarchus’s heliostaticism.

In Copernicus’ dedication of On the Revolutions to Pope Paul III — which Copernicus hoped would dampen criticism of his heliocentric theory by “babblers… completely ignorant of [astronomy]” — the book’s author wrote that, in rereading all of philosophy, in the pages of Cicero and Plutarch he had found references to those few thinkers who dared to move the Earth “against the traditional opinion of astronomers and almost against common sense.”

Beginning in the 10th century, a tradition criticizing Ptolemy developed within Islamic astronomy, which climaxed with Ibn al-Haytham of Basra’s Al-Shukūk ‘alā Baṭalamiyūs (Doubts Concerning Ptolemy). Several Islamic astronomers questioned the Earth’s apparent immobility, and centrality within the universe. Some accepted that the earth rotates around its axis, such as Abu Sa’id al-Sijzi. According to al-Biruni, al-Sijzi invented an astrolabe based on a belief held by some of his contemporaries “that the motion we see is due to the Earth’s movement and not to that of the sky.” That others besides al-Sijzi held this view is further confirmed by a reference from an Arabic work in the 13th century which states:

According to the geometers [or engineers] (muhandisīn), the earth is in constant circular motion, and what appears to be the motion of the heavens is actually due to the motion of the earth and not the stars.

In the 12th century, Nur ad-Din al-Bitruji proposed a complete alternative to the Ptolemaic system (although not heliocentric). He declared the Ptolemaic system as an imaginary model, successful at predicting planetary positions, but not real or physical. Al-Bitruji’s alternative system spread through most of Europe during the 13th century, with debates and refutations of his ideas continued up to the 16th century.

Portrait of Copernicus holding a lily of the valley, published in Nicolaus Reusner's Icones (1587), based on a sketch by Tobias Stimmer (c. 1570), allegedly based on a self-portrait by Copernicus. This portrait became the basis of most later depictions of Copernicus
Portrait of Copernicus holding a lily of the valley, published in Nicolaus Reusner’s Icones (1587), based on a sketch by Tobias Stimmer (c. 1570), allegedly based on a self-portrait by Copernicus. This portrait became the basis of most later depictions of Copernicus

Mathematical techniques developed in the 13th to 14th centuries by Mo’ayyeduddin al-Urdi, Nasir al-Din al-Tusi, and Ibn al-Shatir for geocentric models of planetary motions closely resemble some of those used later by Copernicus in his heliocentric models. Copernicus used what is now known as the Urdi lemma and the Tusi couple in the same planetary models as found in Arabic sources. Furthermore, the exact replacement of the equant by two epicycles used by Copernicus in the Commentariolus was found in an earlier work by Ibn al-Shatir of Damascus. Ibn al-Shatir’s lunar and Mercury models are also identical to those of Copernicus. This has led some scholars to argue that Copernicus must have had access to some yet to be identified work on the ideas of those earlier astronomers. However, no likely candidate for this conjectured work has yet come to light, and other scholars have argued that Copernicus could well have developed these ideas independently of the late Islamic tradition. Nevertheless, Copernicus cited some of the Islamic astronomers whose theories and observations he used in De Revolutionibus, namely al-Battani, Thabit ibn Qurra, al-Zarqali, Averroes, and al-Bitruji.

Nilakantha Somayaji (1444–1544), in his Aryabhatiyabhasya, a commentary on Aryabhata’s Aryabhatiya, developed a computational system for a partially heliocentric planetary model, in which the planets orbit the Sun, which in turn orbits the Earth, similar to the Tychonic system later proposed by Tycho Brahe in the late 16th century. In the Tantrasangraha (1500), he further revised his planetary system, which was mathematically more accurate at predicting the heliocentric orbits of the interior planets than both the Tychonic and Copernican models.

The prevailing theory in Europe during Copernicus’s lifetime was the one that Ptolemy published in his Almagest circa 150 CE; the Earth was the stationary center of the universe. Stars were embedded in a large outer sphere which rotated rapidly, approximately daily, while each of the planets, the Sun, and the Moon were embedded in their own, smaller spheres. Ptolemy’s system employed devices, including epicycles, deferents and equants, to account for observations that the paths of these bodies differed from simple, circular orbits centered on the Earth.

Copernicus’ major work on his heliocentric theory was Dē revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres), published in the year of his death, 1543. He had formulated his theory by 1510. “He wrote out a short overview of his new heavenly arrangement [known as the Commentariolus, or Brief Sketch], also probably in 1510 [but no later than May 1514], and sent it off to at least one correspondent beyond Varmia [the Latin for “Warmia”]. That person in turn copied the document for further circulation, and presumably the new recipients did, too…”

Copernicus's schematic diagram of his heliocentric theory of the Solar System from De revolutionibus orbium coelestium
Copernicus’s schematic diagram of his heliocentric theory of the Solar System from De revolutionibus orbium coelestium

Copernicus’ Commentariolus summarized his heliocentric theory. It listed the “assumptions” upon which the theory was based, as follows:

  1. There is no one center of all the celestial circles or spheres.
  2. The center of the earth is not the center of the universe, but only the center towards which heavy bodies move and the center of the lunar sphere.
  3. All the spheres surround the sun as if it were in the middle of them all, and therefore the center of the universe is near the sun.
  4. The ratio of the earth’s distance from the sun to the height of the firmament (outermost celestial sphere containing the stars) is so much smaller than the ratio of the earth’s radius to its distance from the sun that the distance from the earth to the sun is imperceptible in comparison with the height of the firmament.
  5. Whatever motion appears in the firmament arises not from any motion of the firmament, but from the earth’s motion. The earth together with its circumjacent elements performs a complete rotation on its fixed poles in a daily motion, while the firmament and highest heaven abide unchanged.
  6. What appear to us as motions of the sun arise not from its motion but from the motion of the earth and our sphere, with which we revolve about the sun like any other planet. The earth has, then, more than one motion.
  7. The apparent retrograde and direct motion of the planets arises not from their motion but from the earth’s. The motion of the earth alone, therefore, suffices to explain so many apparent inequalities in the heavens.

De revolutionibus itself was divided into six sections or parts, called “books”:

  1. General vision of the heliocentric theory, and a summarized exposition of his idea of the World
  2. Mainly theoretical, presents the principles of spherical astronomy and a list of stars (as a basis for the arguments developed in the subsequent books)
  3. Mainly dedicated to the apparent motions of the Sun and to related phenomena
  4. Description of the Moon and its orbital motions
  5. Exposition of the motions in longitude of the non-terrestrial planets
  6. Exposition of the motions in latitude of the non-terrestrial planets

Scott #1488, an 8-cent black and orange stamp issued by the United States Postal Service commemorating the 500th anniversary of the birth of  Nicolaus Copernicus, was first placed on sale at Washington, D.C., on April 23, 1973. The stamp was designed by Alvin Eisenman based on an 18th century engraving.  It was printed by the Bureau of Engraving and Printing using offset lithography and engraving, and was issued in sheets of fifty, perforated 11, with a printing run of 159,475,000.

There have been a few stamps, naturally, picturing Copernicus and his heliocentric theory. Currently, I only have the U.S. stamp (and a used copy at that) but plan to add a few more as time goes on. I do have a Copernicus postcard, however, mailed to me two years ago from Poland. There is a write-up of the card on my Postcards to Phuket blog. Please have a look if you are interested.

2 thoughts on “Nicoalus Copernicus

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.